Lifetime Measurements Superdeformed Bands in ^{192,193}Hg B.C.Busse¹, P.Fallon¹, R.Krücken¹, D.Ackermann², I.Ahmad², S.J.Asztalos¹, D.J.Blumenthal², M.P.Carpenter², R.M.Clark¹, M.A.Deleplanque¹, R.M.Diamond¹, S.M.Fischer², F. Hannachi⁴, R.V.F.Janssens², T.L.Khoo², A.Korichi⁵, T.Lauritsen², I.Y.Lee¹, A.Lopez-Martens⁴, A.O.Macchiavelli¹, R.W.MacLeod¹, E.F.Moore³, D.Nisius², G.Schmid¹, D.Seweryniak², F.S.Stephens¹, and K.Vetter¹. ¹Lawrence Berkeley National Laboratory. ²Argonne National Laboratory. ³North Carolina State University. ⁴Centre de Spéctrometrie Nucléaire et de Spectrométrie de Masse, Orsay, France. ⁵Institut de Physique Nucléaire, Orsay, France. Much of our understanding of A~190 superdeformed (SD) bands stems from a knowledge of their transition energies. It is clear that precise measurements of other nuclear properties, such as level spins and deformations (or quadrupole moments, Q_t), are necessary in order to better understand these nuclei, and in particular the "identical band" phenomenon. Here, we report on a measurement of Q_t values of multiple SD bands in 193 Hg, and a comparison of Q_t values of SD bands in the neighboring odd-A and even-A nuclei, 193 Hg and 192 Hg [1]. The Q_t values determined in this work were obtained simultaneously in a single experiment, which reduces the systematic uncertainties due to stopping power calculations. The experiment was performed at the LBNL 88-Inch cyclotron using Gammasphere. The target consisted of a 1 mg/cm² ¹⁷⁶Yb foil evaporated onto a 6.8 mg/cm² ¹⁹⁷Au backing, which served to slow and stop the recoiling nuclei. Lifetimes of the SD states were determined by a Doppler-shift attenuation method (DSAM) measurement. For each SD transition, a fraction-of-full-Doppler-shift ($F(\tau) = \bar{v}/v_0$) curve was determined (see figure). The experimental $F(\tau)$ values were then fitted with calculated $F(\tau)$ curves to obtain the average in-band quadrupole moment (Q_t), and the average quadrupole moment associated with the unknown side-feeding states (Q_s). Quadrupole moments of band 1 in ¹⁹²Hg and bands 1 and 4 in ¹⁹³Hg were also determined by a lineshape analysis. The six $^{193}{\rm Hg}$ SD bands are found to have similar $F(\tau)$ values, implying similar Q_t values and deformations. This means the active single-particle orbitals of ¹⁹³Hg do not have large shape-driving effects. The $F(\tau)$ values of the ¹⁹²Hg yrast SD band and the ¹⁹³Hg SD bands are not the same. If this difference was due to ¹⁹²Hg and ¹⁹³Hg having different quadrupole moments, then the identical bands, 192 Hg(1) and 193 Hg(2.3), would have different deformations. However, at this time it cannot be unambiguously stated that this discrepancy is due to differences in the Q_t values, but may reflect differences in the feeding time-profiles for the bands. The fact that a difference in the ¹⁹²Hg and ¹⁹³Hg Q_t values would have important consequences in the understanding of identical band properties means that, at the very least, this is a result that deserves further investigation. ## References [1] B.Busse et al., Phys. Rev. C57 (1997).